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This  work  proposes  a  method  for monitoring  the  ageing  of beer  using  near-infrared  (NIR)  spectroscopy
and  chemometrics  classification  tools.  For  this  purpose,  the Successive  Projections  Algorithm  (SPA)  is used
to  select  spectral  variables  for  construction  of Linear  Discriminant  Analysis  (LDA)  classification  models.
A  total  of  83  alcoholic  and  non-alcoholic  beer  samples  packaged  in  bottles  and  cans  were  examined.  To
simulate  a long  storage  period,  some  of  the  samples  were  stored  in  an  oven  at  40 ◦C,  in  the  dark,  during
intervals  of  10  and  20  days. The  NIR  spectrum  of  these  samples  in  the range  12,500–5405  cm−1 was
then  compared  against  those  of  the  fresh  samples.  The  results  of  a  Principal  Component  Analysis  (PCA)
eer
geing
ear infrared spectroscopy
avelength  selection

lassification
uccessive  Projections Algorithm
inear Discriminant Analysis

indicated  that  the  alcoholic  beer  samples  could  be  clearly  discriminated  with  respect  to  ageing  stage
(fresh,  10-day  or  20-day  forced  ageing).  However,  such  discrimination  was  not  apparent  for  the  non-
alcoholic  samples.  These  findings  were  corroborated  by  a  classification  study  using  Soft  Independent
Modelling  of  Class  Analogy  (SIMCA).  In  contrast,  the  use of  SPA-LDA  provided  good  results  for  both  types
of  beer  (only  one  misclassified  sample)  by using  a  single  wavenumber  in each  case,  namely  5550  cm−1

for  non-alcoholic  samples  and  7228  cm−1 for alcoholic  samples.
© 2011 Elsevier B.V. All rights reserved.
. Introduction

An important challenge in the brewing industry consists of
inimizing changes in the quality of beer from production to con-

umption stages. In this context, beer ageing is considered to be a
ajor quality problem since the ageing flavours are mostly experi-

nced as unpleasant [1]. Therefore, flavour stability over the ageing
rocess has become one of the most important topics in brewing
esearch over the past few years [2–4].

Beer flavour is conventionally assessed through the combina-
ion of common analytical tools (e.g. gas chromatography) and
rganoleptic profiling panels known as human sensory panels.

owever, these expensive and time-consuming methods may  not
e appropriate for on-line monitoring in breweries. In addition,
rganoleptic panels are prone to assessor fatigue and subjectivity,
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aculty  of Agriculture, Shahrekord University, Shahrekord, Iran.
el.: +98 3814424403; fax: +98 3814424428.
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oi:10.1016/j.talanta.2011.12.030
which may  compromise the accuracy and reproducibility of the
results.

Within this scope, one of the most promising directions for
the development of innovative solutions is the use of spectro-
scopic methods. In fact, the speed and on-line capabilities of such
methods meet the trends of automation and continuous process-
ing in the brewing industry. Nuclear magnetic resonance (NMR)
spectroscopy, for example, can be used to monitor the change in
chemical composition of beers during the period of storage [5].
However, the cost associated to this technique may  be prohibitive
for routine use in the production line. Alternatively, the applica-
tion of vibrational spectroscopy, such as near infrared (NIR), may
constitute a less costly approach to characterize changes in the
organic compounds involved in beer ageing. The joint use of NIR
spectroscopy and chemometrics techniques has been reported in
the literature in several applications of quality control and analy-
sis of fuel [6], vegetable oil [7], cigarettes [8], and biodiesel [9], for

example.

The NIR range extends from 13,300 to 4000 cm−1 and comprises
overtones and combinations of fundamental vibrational transitions
that occur in the middle infrared region [10]. As a result, a NIR
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Table 1
Sample set partitioning for SIMCA and SPA-LDA.

Class Alcoholic samples Non-alcoholic samples

Training Test Training Test

N 7 7 7 7
F1 7 7 7 7
M. Ghasemi-Varnamkhasti e

pectrum is formed by several overlapping bands, and thus the use
f multivariate analysis tools is usually required. For classification
urposes, methods based on Principal Component Analysis (PCA),
uch as Soft Independent Modelling of Class Analogy (SIMCA), can
e employed to exploit the spectrum in the entire working range
11–13]. As an alternative, variable selection methods can be used
o identify specific spectral variables that convey useful informa-
ion for the analytical problem at hand.

Variable selection may  have several advantages, such as removal
f noise and nonlinearity, as compared to using the full spectrum
14]. Algorithms described in the literature for selection of variables
n chemical data include the Genetic Algorithm [15], Simulated
nnealing [16], Tabu Search [17] and Colony of Ants [18] among
thers. In this context, Araújo et al. proposed the Successive Pro-
ections Algorithm (SPA) for selection of variables in multiple linear
egression (MLR) [19]. In a subsequent work, Pontes et al. proposed

 modification to SPA so that it could also be applied to classifi-
ation problems in conjunction with Linear Discriminant Analysis
LDA) models [20].

Although  studies on spectroscopic analysis of beer have been
eported in the literature [21–27], this approach has not yet been
ursued for the characterization of ageing. The objective of the
resent investigation consists of using NIR spectroscopy together
ith SPA-LDA for screening analysis of ageing in alcoholic and non-

lcoholic beers. For comparison, full-spectrum SIMCA models are
lso employed.

.  The Successive Projections Algorithm for Linear
iscriminant Analysis

The  SPA-LDA algorithm is aimed at selecting a subset of vari-
bles with small collinearity and suitable discriminating power for
se in classification problems involving C ≥ 2 different classes. For
his purpose, it is assumed that a training set of N objects with
nown class labels is available to guide the variable selection pro-
ess. In the case of spectroscopic data, for example, each object
onsists of a spectrum recorded over K wavenumbers (or wave-
engths).

The SPA-LDA algorithm can be divided into two  main phases. In
hase 1, the N training objects are centered on the mean of their
espective classes and stacked in the form of a matrix X (N × K). Each
olumn of X is associated to a variable (i.e. a wavenumber in the case
f spectroscopic data). Projection operations involving the columns
f X are then carried out to form K chains of L variables, where

 = min  (K, N − C). Each chain is initialized with one of the K available
ariables. Subsequent variables in the chain are selected in order
o display the smallest collinearity (as assessed by the projection
perations) with the preceding ones.

In Phase 2, different subsets of variables are extracted from the
hains and then evaluated in terms of a cost function G defined
s

 = 1
N

N∑

n=1

gn (1)

here

n = r2[xn, x̄(In)]
minIj /=  In r2[xn, x̄(Ij)]

(2)

In  Eq. (2), the numerator r2[xn, x̄(In)] is the squared Mahalanobis
istance [28] between object xn (of class index In) and the sam-

le mean x̄(In) of its true class (both row vectors). This distance is
alculated as

2[xn, x̄(In)] = [xn − x̄(In)]S−1[xn − x̄(In)]T (3)
F2 7 7 7 6

Total 21 21 21 20

where S is a pooled covariance matrix, which is calculated in accor-
dance with the standard LDA procedure [29]. The denominator in
Eq. (2) corresponds to the squared Mahalanobis distance between
object xn and the center of the nearest wrong class. A small value of
gn indicates that xn is close to the center of its true class and distant
from the centers of the remaining classes. Therefore, minimizing
the cost G results in a better separation of the objects according to
their true classes.

SPA-LDA  has been employed in several applications involving
spectroscopic data, such as the classification of vegetable oils [20]
and coffee [30] by UV–vis spectroscopy, as well as soil samples
by LIBS (laser-induced plasma breakdown spectroscopy) [31]. In
the case of NIR spectroscopy, applications have included the clas-
sification of diesel samples according to sulphur content [20] and
cigarettes with respect to brand [8].

3. Materials and methods

3.1.  Samples

A  total of 83 samples of regular beer (42 alcoholic and 41 non-
alcoholic) packed in bottles and cans were used in this study. To
simulate a long storage period, 55 samples were stored in an oven
at 40 ◦C, in the dark, in the original closed containers (bottles and
cans). This procedure is known as forced ageing in the literature
[32–34]. After 10 days, 28 samples (termed class F1) were removed
from the oven. The remaining 27 samples (termed class F2) were
removed after an additional period of 10 days. The 28 fresh beer
samples (i.e. those not subjected to forced ageing) were used to
form the class of non-aged samples, termed N.

3.2. NIR measurements

The  beer samples were prepared for NIR measurements by
following standard procedures described in the literature [35].
The measurements were carried out with a Nicolet Magna-IR 760
NIR spectrometer equipped with a glass cell with optical path of
8 mm.  The spectrum of each sample was acquired in the range
12,500–5405 cm−1 with a resolution of 4 cm−1 by coaveraging 500
scans. The same procedure was  employed to acquire the spectrum
of the background (water), which was  subtracted from the sample
spectra. The room temperature was kept constant at 25 ◦C through-
out the process. The spectra were acquired after the beer samples
reached thermal equilibrium with the room.

3.3. Software

In  order to remove baseline features, the spectra were pro-
cessed by using the first derivative Savitzky-Golay filter with
window of 121 points and second-order polynomial. The result-
ing derivative spectra comprised 1800 spectral variables in the

range 5521–8991 cm−1. Principal Component Analysis was used
for a preliminary evaluation of the discriminating power of the
NIR spectrum in relation to the ageing of the beer samples. Sub-
sequently, the data were partitioned into training and test sets
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Table 2
Type-II SIMCA errors (training/test) obtained in the classification of the samples
with  respect to ageing.

Number of samples Significance level

0.05 0.10 0.25
Fig. 1. Raw (a) and derivative (b) spectra of the 83 beer samples.

y using the classic Kennard–Stone algorithm [36] as indicated
n Table 1. SPA-LDA and SIMCA models were built to classify the
eer samples with respect to degradation time (classes N, F1, F2).
ennard–Stone and SPA-LDA calculations were carried out in Mat-

ab 2010a, while Savitzky-Golay, PCA and SIMCA calculations were
arried out in Unscrambler 9.7.

. Results and discussion

.1.  NIR spectra

As  seen in Fig. 1a, the raw spectra of the 83 beer samples with
ater background subtracted display high noise levels, as well as

ystematic variations of baseline. Such problems were corrected by
sing the first derivative Savitzky-Golay filter, which resulted in the
erivative spectra shown in Fig. 1b. These spectra were employed
hroughout the study.

.2.  Principal Component Analysis

Fig. 2a presents the PCA score plot for the overall data set, with
he percentage explained variance indicated at each axis. As can be
een, the beer samples with and without alcohol can be roughly
iscriminated along PC1, which indicates that the main source of
ariability within the spectral data is related to the OH ethanol
and. In fact, according to the PC1 loadings plot in Fig. 2b, the largest

oading corresponds to wavenumber 7135 cm−1, which is associ-
ted to the first OH overtone [37]. It is worth noting that some
lcoholic samples are close to the non-alcoholic ones in Fig. 2a.
t may  be argued that the ethanol in these alcoholic samples has
een partly degraded during the forced ageing process [1,3], which
ould explain the proximity to the non-alcoholic samples. How-

ver, an analysis of the chemical composition of the samples (by
sing NMR, as in [5], for example), would be required to corroborate
his explanation.
Due to the large influence of ethanol on the NIR spectra, the
lcoholic and non-alcoholic groups were analyzed separately for
he purpose of evaluating the ageing effects. Fig. 2c presents the
ew PCA score plot obtained for the group of alcoholic samples.
Alcoholic (21/21) 6/10 5/5 0/2
Non-alcoholic (21/20) 21/20 21/20 12/11

As can be seen, the samples can be separated along PC1 accord-
ing to the ageing stage (N, F1, F2). According to Fig. 2d, the largest
PC1 loading is found at 7155 cm−1, which is also located in a spec-
tral region associated to the first OH overtone [37]. It may thus
be argued that ageing effects may  be related to chemical reactions
resulting in alterations of ethanol content, as discussed above.

The  new PCA score plot for the non-alcoholic samples is pre-
sented in Fig. 2e. In this case, a separation according to ageing state
is not observed. According to the PC1 loading plot in Fig. 2f, the main
variability among the non-alcoholic sample spectra seems to be
related to the first OH overtone. Such a finding suggests that these
samples may  have a residual ethanol content. However, the ethanol
concentration is too small to cause changes in the NIR spectrum
over the ageing process.

It  is also worth noting that PC1 accounts for 81% of the explained
variance in Fig. 2c (alcoholic samples) and only 38% of the explained
variance in Fig. 2e (non-alcoholic samples). Such a finding suggests
that changes in ethanol content are indeed the major source of
spectral variability over the ageing process.

4.3. SIMCA classification

Full-spectrum SIMCA models were built for the three classes
under consideration (N, F1 and F2). Full cross-validation using the
training set was  applied to determine the optimal number of prin-
cipal components for each class. In the classification process, three
significance levels were tested (0.05, 0.10, 0.25). It is worth not-
ing that SIMCA classification errors can be of two types. A type-I
error consists of a sample not included in its own  class and a type-II
error consists of a sample included in an incorrect class. All sam-
ples were correctly included in their respective classes, regardless
of the significance level employed in the classification, i.e. no type-I
errors occurred. However several samples were also included in an
incorrect class. Table 2 presents the number of type-II errors in the
training and test sets. Even in the best case, which corresponded to
the significance level of 0.25, a considerable number of errors were
obtained, especially for the non-alcoholic samples. This result is in
agreement with the strong overlapping among the N, F1, F2 classes
observed for the non-alcoholic samples in Fig. 2e.

4.4.  SPA-LDA classification

Fig.  3 presents the cost function values obtained for the training
set in the SPA-LDA variable selection process. As discussed in [20],
the optimal number of variables corresponds to the minimum value
of the cost, which can be interpreted as the risk of misclassification
by the LDA model. Therefore, a single wavenumber was selected
for the alcoholic samples and also for the non-alcoholic samples.
The selected wavenumbers are shown in Fig. 4.

The SPA-LDA model correctly classified all alcoholic samples, in
both the training and test sets, with respect to the ageing stage
(N, F1, F2). As regards the non-alcoholic samples, only one test
sample was incorrectly classified. These results can be interpreted

by inspecting the univariate plots corresponding to the selected
wavenumber in Fig. 5a (7228 cm−1, alcoholic samples) and Fig. 5b
(5550 cm−1, non-alcoholic samples). The horizontal lines indicate
the boundaries between classes, while the vertical line separates
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The separation among the N, F1, F2 classes can also be visualized
in Fig. 6a and b for the alcoholic and non-alcoholic samples, respec-
tively. The insets in these figures present an expanded view of the
Fig. 2. Principal Component Analysis: score and loading plots for all 83 beer sam

he training and test sets. As can be seen, there is no overlap
etween the N, F1, F2 classes. The only sample that was  incorrectly
lassified is indicated with a circle in Fig. 5b. Although the clas-

ification was incorrect in this case, the sample was close to the
oundary of its true class.

Fig. 3. Determination of the optimal number of variables in SPA-LDA.
a and b) for alcoholic samples (c and d) and for non-alcoholic samples (e and f).
derivative spectra around the wavenumbers selected by SPA-LDA.

Fig. 4. Average raw and derivative spectrum of the overall data set with indication
of the wavenumbers selected by SPA-LDA.
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ig. 5. Value corresponding to the derivative spectrum at the wavenumber selected
y SPA-LDA for alcoholic (a) and non-alcoholic (b) samples.

or the alcoholic samples, the selected wavenumber (7228 cm−1)
s associated with the first OH overtone, which again suggests that
he ageing process may  be related to changes in ethanol content.
n contrast, the wavenumber selected for the non-alcoholic sam-
les (5550 cm−1) is associated with the first SH overtone [37]. This
nding may  be ascribed to deterioration processes resulting in the

ormation of minor amounts of sulphur compounds. It is worth
oting that such a separation among N, F1 and F2 classes was
ot apparent in the PCA score plot presented in Fig. 2e. In fact,
hen the overall spectrum is employed in PCA, the small alter-

tions around 5550 cm−1 are masked by measurement noise and

ther sources of data variability that are unrelated to the ageing
ffects.

ig. 6. A detailed picture of the NIR derivative spectra around the wavenumbers
elected  by SPA-LDA for alcoholic (a) and non-alcoholic (b) samples.
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5. Conclusions

This paper proposed a methodology for screening analysis of
beer ageing employing NIR spectrometry and Linear Discriminant
Analysis coupled with the Successive Projections Algorithm for
wavenumber selection. PCA results indicated that the NIR spec-
trum in the adopted working range (12,500–5405 cm−1) provides
a clear discrimination of alcoholic beer samples with respect to the
ageing stage (fresh, 10-day or 20-day forced ageing). However, such
a discrimination was  not apparent for the non-alcoholic samples.
The PCA findings were corroborated by a classification study using
SIMCA models, which provided good results for the alcoholic sam-
ples, but were unable to discriminate the non-alcoholic samples. In
contrast, the use of SPA-LDA provided appropriate results for both
alcoholic and non-alcoholic beers by using only one wavenumber
in each case.

It  can be concluded that the use of NIR spectroscopy with
chemometrics methods may  provide valuable information about
the ageing stage of beer.
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